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A completely automated system for the identification of pleural nodules in low-dose and thin-slice

computed tomography (CT) of the lung has been developed. The directional-gradient concentration

method has been applied to the pleura surface and combined with a morphological opening-based

procedure to generate a list of nodule candidates. Each nodule candidate is characterized by 12

morphological and textural features, which are analyzed by a rule-based filter and a neural classifier.

This detection system has been developed and validated on a dataset of 42 annotated CT scans. The

k-fold cross validation has been used to evaluate the neural classifier performance. The system

performance variability due to different ground truth agreement levels is discussed. In particular, the poor

44% sensitivity obtained on the ground truth with agreement level 1 (nodules annotated by only one

radiologist) with six FP per scan grows up to the 72% if the underlying ground truth is changed to the

agreement level 2 (nodules annotated by two radiologists).

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Lung cancer is one of the most lethal kinds of cancer
worldwide. The overall 5-year survival rate is only 10–15% [1,2]
and no significant improvement has occurred in the last 20 years
[3]. Non-calcified small pulmonary nodules are considered as the
primary signs of early-stage lung cancers. Computed tomography
(CT) has been shown to be the most sensitive imaging modality
for detecting small pulmonary nodules, particularly since the
introduction of the multi-detector-row and helical CT technolo-
gies [4]. The efficacy of screening trial protocols based on low-
dose CT with thin reconstructed slice thickness in reducing the
lung cancer mortality rate are currently under investigation in
many developed countries [5–8]. Depending on the screening trial
protocol, the radiologists may have to identify even very small
nodules, carrying out an extremely difficult and time-consuming
task. Nodules are rather spherical or hemispherical objects that
ll rights reserved.

tico).
can be characterized by low CT values and/or low contrast. They
may have CT values in the same range of those of blood vessels
and airway walls and may be strongly connected to them or to the
pleura surface. The nodule identification in screening CT is
particularly difficult as low-dose CT images show a noisier
appearance with respect to the standard-dose ones and an
amount of image data as large as about 300 2D slices per scan
may be generated in case thin reconstructed slice thickness is
used.

To support radiologists in the challenging task of interpreting
screening lung CT scans, researchers explore computer-aided
detection (CAD) methods devoted to the automated identification
of possibly pathological objects in the images. In this framework,
an automated procedure for the detection of lung nodules
embedded in the lung parenchyma has already been developed
by our group, and described in [9,10]. That system is devoted to
the identification of almost spherical shaped nodules, which can
be either isolated, i.e. not connected to the surrounding anatomi-
cal structures, or attached to blood vessels and fissures, or
connected to the pleura surface by a tail. The main steps of that
analysis are a filter based on the eigenvalues of the Hessian matrix
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Fig. 1. Examples of pleural nodules: nodule appearance in 2D CT slices (top) and the corresponding shaded surface display representations (bottom).
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to enhance spherical objects [11], and an original voxel-based
neural approach (VBNA) to reduce false-positive detections.
The system we present in this paper is instead devoted to the
automated identification of pleural nodules only, i.e. nodules
deeply connected to the pleura surface. They are characterized by
a rather hemispherical shape, as they originate in the pleura
surface and grow toward the lung parenchyma. Examples of the
pleural nodule appearance in 2D CT slices and the corresponding
shaded surface display representations are shown in Fig. 1.
The approach we followed to identify this type of nodules is
completely different from that we used for nodules embedded in
the lung parenchyma. In this case, the analysis is focused on the
curvature of pleura surface, and a regional feature-based approach
instead of a voxel-based one is implemented to reduce the
amount of false-positive detections. We designed a dedicated
system to identify pleural nodules as they are different in
morphology with respect to nodules embedded in the lung
parenchyma. Dealing with each nodule category with different
dedicated CAD systems and combining their results can lead to a
possible improvement in lung nodule automated detection.

This paper is structured as follows: the dataset we used in
this analysis is described in Section 2, the CAD algorithm is
presented in Section 3, and the final system results are reported in
Section 3.3.
2. The dataset of lung CT scans

The dataset of lung CTs used to develop, test and validate the
CAD system was acquired by means of a helical 4-slice CT scanner
(Siemens Volume Zoom) according to a low-dose protocol (tube
voltage: 140 kV, tube current: 20 mA, mean equivalent dose
0.6 mSv, scanning time: 6–8 s), with 1.25 mm slice collimation.
Each scan is stored in DICOM format [12]. Slices were recon-
structed at 1 mm thickness, using a medium sharp reconstruction
kernel (Siemens B50f). The number of slices per scan is 312718,
each slice being a 512� 512 pixel matrix, with pixel sizes ranging
from 0.53 to 0.74 mm and 12 bit gray levels in Hounsfield units.
The dataset used in this analysis consists of 42 CT scans.

The dataset annotation was provided by two experienced
radiologists participating to our research project. The software we
developed for annotating the CT scans allows the radiologists to
draw a circle enclosing a selected object on a CT slice; then, a 3D
viewer is popped-up on demand to allow the size and location
adjusting of the annotating sphere according to the nodule
appearance in 3D. In the case of pleural nodules, the annotated
diameters very often provide an overestimate of the nodule size.
We considered for this study only the pleural nodules character-
ized by an annotated diameter greater than 5 mm.

To build a reference standard with nodules annotated either by
only one or by both radiologists, we followed the method
introduced in Opfer et al. [13]. We call ground truth with agreement
level j the list of all nodules which are marked by at least j of the
radiologists who performed the CT annotation; j¼ 1;2 in our
study. The dataset of 42 CT scans considered in this analysis
contains 102 solid pleural nodules according to the ground truth

with agreement level 1 and 25 solid pleural nodules according to
the agreement level 2. It can be observed that there is a substantial
interreader variability, reflecting the difference in opinion
even among radiologists with a similar degree of experience.
The issue of interreader variability is widely recognized in both
the detection and boundary delineation of lung nodules on CT
[13–15]. The degree of agreement we found between the
annotations performed by the two readers involved in our study
is consistent with the percentages reported by other studies
[13–15].

The average diameter of the annotated nodules is 7.6 mm with
4.0 mm standard deviation at the agreement level 1, whereas it is
5.6 mm with 2.4 mm standard deviation at the agreement level 2.
We noticed that some very large abnormalities marked at the
agreement level 1 were not confirmed as nodules at the agreement

level 2.
3. The CAD system

The CAD strategy we implemented to identify the pleural
nodules is shown in the block diagram reported in Fig. 2. It is
based on the following steps:
�
 A list of regions of interest (ROIs) is obtained by applying a
two-step procedure: first, the pleura is identified by an iso-
surface triangulation technique; then, the ROIs are provided by
the directional-gradient concentration method combined to a
morphological opening operation.

�
 The false-positive (FP) findings populating the ROI list are

ruled out by the following method: 12 geometrical and
textural features are computed on the nodule candidate
segmented out of each ROI; finally, a rule-based filter followed
by a neural classification generate the list of CAD findings.

All steps of the analysis are detailed below.

3.1. Identification of nodule candidates: the ROI hunter procedure

A crucial task in the development of a CAD scheme for nodule
detection is the initial selection of nodule candidates, which was
carried out by means of a 3-step ROI hunter algorithm. For each CT
scan it provides a list of the locations of the nodule candidates,
expressed in terms of the x; y and z coordinates of their centers.

3.1.1. Identification of the pleura surface

The pleura has been identified as the separating surface
between the lung parenchyma and the surrounding soft tissues.



ARTICLE IN PRESS

Fig. 2. Block diagram of the main steps of our CAD.

Fig. 3. Gray-level distribution of the voxel intensities in HU obtained for one CT

scan of our dataset. Similar distributions can be obtained from the other CTs.
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It has been determined according to an iso-surface triangulation
technique.

Given a value mI (iso-value), the iso-surface corresponding to mI

is defined as the set of points satisfying the equation mðx; y; zÞ ¼ mI.
Such equation defines a surface that separates volumes having
density greater than mI from volumes having density lower than
mI . As shown in Fig. 3 reporting the intensity distribution
of mðx; y; zÞ for one CT scan of our dataset, the lung parenchyma
has a very low mean density (lower than �800 HU), while the soft
tissues have a mean density around zero HU. To separate the lung
parenchyma from the soft tissues, the value mI ¼ � 500 HU can be
used, as it corresponds approximately to the average between the
mean densities of these tissues.

A discrete representation of an iso-surface can be obtained
by approximating it by a set of small triangular facets. Such
procedure is called iso-surface triangulation. To represent the iso-
surface obtained for mI ¼ � 500 HU, we used the popular march-
ing-cube algorithm [16,17]. The output of the triangulation
algorithm is a collection of triangular facets, which are clusterized
into connected components by forcing two triangles into the same
component when they have at least one edge in common. The
volume enclosed by each of these connected surfaces is evaluated.
By convention, the sign is taken as positive if the intensity values
inside the surface are above the threshold (and thus the region
outside has values below the threshold), negative otherwise.
For example, the surface corresponding to the epidermis has a
positive sign, since it is surrounded by air, which is surely below
the threshold. The surface separating the lung parenchyma from
the surrounding soft tissues is identified as the connected surface
having the negative volume of largest magnitude. A mask for the
lung parenchyma is obtained by flood-filling the volume inside
such surface. At this stage, vessels and airway walls are not
included in the mask. To include them, a procedure based on
morphological operators was developed. In particular, the dilation
operator with a spherical kernel of 10 voxels of diameter is applied
to fill in the vessels and the airway walls, then, the erosion
operator with spherical kernel of 20 voxels of diameter strongly
erodes the mask border. Finally, the logical OR operation between
the so-obtained mask and the original lung mask provides the
final mask where the vessels and the airway walls are filled in,
while maintaining the original shape of the lung mask border, i.e.
the shape of the pleural nodule is not modified by this procedure.

3.1.2. Directional-gradient concentration (DGC)

To identify the ROIs where pleural nodules can be located, we
implemented the directional-gradient concentration (DGC) method
[18,19], applied to the pleura surface. As pleural nodules are
usually characterized by a convex surface, the inward-pointing
fixed-length surface normal vectors Nðx; y; zÞ crossing the nodule
surface tend to intersect within the nodule tissue. A 3D array,
denoted as Aðx; y; zÞ, counts the number of surface normals passing
through each voxel, i.e. each voxel accumulates a score propor-
tional to the number of surface normals that pass through it (see
the 2D sketch in Fig. 4). The larger the number of the line
segments passing through a voxel, the higher the score the voxel
has in the A matrix. The local maxima in the A matrix represent
the convex regions characterizing pleural nodules or irregularities
in the pleura surface. The DGC procedure has only one free
parameter, which is the length of the surface normal vector. We
fixed this parameter to l¼ 9 mm, as this value enables the
detection of nodules with effective diameters in the range of
those annotated in our dataset. We also verified that higher values
of l lead to an increase of noisy entries into the ROI list, whereas
lower values of l do not allow the normal vector overlap in
correspondence to large nodules.

We found out that many local maxima of the A matrix are
irregularities located in correspondence to the mediastinal pleura.
As shown in Fig. 5, the surface representing the mediastinal pleura
in our CT scans is characterized by many folds and ridges, which
are artifacts probably generated by the heart beating. The 3D DGC
procedure is sensitive to these ridge-shaped artifacts, as they
provide counts in the A matrix in the same range of the nodules.
However, as they have the principal direction corresponding to
the maximum curvature along the z axis, these artifacts will not
affect a 2D slice-wise analysis. Thus we decided to combine
the DGC method with a specific 2D procedure, as described in the
following section.

3.1.3. Matching with the morphological opening-based procedure

A morphological opening operation has been implemented slice
wise following the schema reported in Fig. 6 and described below:
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Fig. 4. Sketch of the DGC procedure: each voxel of the Aðx; y; zÞmatrix accumulates a score proportional to the number of surface normals that pass through it. For example,

if five line segments pass through the central voxel of a pleural nodule, the score 5 will be assigned to that voxel.

Fig. 5. Appearance of the mediastinal pleura in a CT scan: the flatness of the diaphragmatic pleura can be compared with the knurled surface representing the mediastinal

pleura.

Fig. 6. Morphological opening-based procedure applied to a CT slice: (a) a slice of the original CT scan; (b) binary conversion of the slice once the pleura has been identified;

(c) opened image; (d) the image in (c) is subtracted from the image in (b) and (e) shaded surface display representation of one nodule candidate.
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�
 the image obtained after the identification of the pleura
surface is converted to a binary mask setting to 1 the region
outside the pleura and to 0 the region inside;

�
 the morphological opening operator is applied slice wise to this

mask by using a circular disk as structuring element;

�
 the opened image is then subtracted from the binary mask slice

by slice;

�
 the sequence of 2D images obtained is recombined in a 3D

array, denoted as Bðx; y; zÞ.

The only parameter introduced in this procedure is the size of the
circular disk used as structuring element in the opening operation.
We fixed the disk diameter to ddisk ¼ 11 mm, as we have verified
that using higher values of ddisk would include in Bðx; y; zÞ

unwanted portions of tissues, such as the section of the vascular
tree near the lung hilum.

The logical AND operation is then implemented between the A

and the B matrices. A peak-detector algorithm is applied to A AND
B to detect the local maxima and create the list of ROIs, identified
by the coordinates of their centers and sorted according to the
value of the score reported in A.

To assess the efficiency of our ROI hunter, we define as true
positives (TPs) the nodule candidates that meet the radiologists’
diagnosis according to the following condition: the Euclidean
distance between the coordinates ðx; y; zÞ of the nodule candidate
center and the center ðxrad; yrad; zradÞ of the radiologists’ drawn
circle has to be smaller than the radius Rrad reported in the
radiologists’ annotation. All the other candidates are considered as
false positives (FPs).

According to the above-mentioned definitions, the efficiency of
the ROI hunter is e¼ 94:1%, corresponding to 96 correctly
identified pleural nodules out of the 102 annotated in our dataset
according to the ground truth with agreement level 1. By contrast,
e¼ 1 according to the ground truth with agreement level 2. At this
stage the average number of FPs per CT is 546.
3.2. False-positive finding reduction

The procedure we implemented to reduce the FP entries in the
ROI list consists in the classification of 12 morphological and
textural features extracted from each nodule candidate.
3.2.1. Feature extraction

To obtain a segmentation mask of each nodule candidate in
order to extract the features, we exploited the output of the
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previously described opening-based procedure. We selected the
3D objects in the B matrix which are connected to the coordinates
of each entry of the ROI list.

Twelve common features based on the geometrical and the
textural characteristics of the so segmented nodule candidates are
computed:
1–4
 the average, the standard deviation, the skewness and the
kurtosis of the density distribution of the nodule candidate,
expressed in HU;
5–6
 the minimum and the maximum value of the density
distribution of the nodule candidate, expressed in HU;
7
 the volume of the nodule candidate, simply estimated by
counting the number of voxels of the segmented mask, and
converting it to a physical volume (mm3) by multiplying it
by the voxel volume;
8
 the volume of the 3D nodule candidate convex hull,
estimated according to the Qhull software [20,21] and
converted to a physical volume (mm3);
9
 the volume of the nodule candidate minimum enclosing ball,
evaluated according to the technique and the code
developed by P. Kumar, J.S.B. Mitchell and E.A. Yildirim
[22];
Fig. 7. The ROC curves obtained on the 10-fold dataset and on the entire dataset
10–12

including all FPs generated by the ROI hunter.
the three eigenvalues of the covariance matrix of the nodule
candidate coordinates, which provide a rotational invariant
measure of the object extension along three orthogonal axes.
3.2.2. Feature classification

The procedure we implemented to reduce the FP entries from
the list of nodule candidates consists in a rule-based filter
followed by a neural classification of the feature vectors.

As a large number of FP findings are characterized by either a
very small or a very large size, a simple rule-based filter can easily
eliminate them from the list of nodule candidates. Performing the
initial FP removal by means of a rule-based scheme is an approach
implemented by several other lung CAD developers [23–25]. A
double-threshold cut on the volume (V) of the segmented nodule
candidates and on the volume of their minimum enclosing ball
(Vmeb) has been implemented in our work. The lower and upper
limits on V and Vmeb have been a priori determined according to
the criterion that CAD has to be sensitive to pleural nodules in the
size range limited by the values of V and Vmeb of the smallest and
of the largest nodule of the available dataset. Whenever a nodule
candidate is characterized by either V or Vmeb out of the allowed
range it is considered as an FP and eliminated from further
processing. This rule-based filter is able to eliminate the 26.8% of
the FPs from the list of nodule candidates. The remaining 400 FPs/
scan on average are further analyzed by a neural classifier.

As the amount of the ROIs containing FPs (16782) is about two
orders of magnitude larger than that of the ROIs containing nodules
(96 according the ground truth with agreement level 1), only a small
percentage of patterns derived from FP regions has to be considered to
create a balanced dataset to train and validate the neural networks.
To this aim we used a self-organizing map (SOM) [26]. Through an
unsupervised learning procedure based on the winner-takes-all rule,
this kind of network clusterizes the input data into the cells of the
Kohonen layer, according to a similarity criterion. We provided the
entire FP dataset to an SOM, thus obtaining the clusterization of the FP
feature vectors into 3� 3 cells. By extracting a small percentage (1.5%)
of the entries from each cell, we collected a sample of the FPs, which
is representative of the entire FP dataset. This dataset of 246 FP
patterns, in addition to the 96 nodule patterns, constitutes the dataset
we used to train and validate the neural classification procedure.

The neural networks we implemented are standard supervised
three-layered feed-forward neural networks (12 input, 14 hidden,
1 output units), trained with the back-propagation learning
algorithm. The k-fold cross validation [27] with k¼ 10 has been
implemented to evaluate the neural classifier performance. This
method is used to determine how accurately a learning algorithm
is able to predict the data it was not trained on. When using the
k-fold method, the dataset is randomly partitioned into k groups.
The neural classifier is then trained k times, using all data except
those in the k th group, and then run on the k th set. The mean
performance obtained over all k sets is evaluated in terms of the
receiver operating characteristic (ROC) analysis [28], which
provides more information than just a single sensitivity and
specificity pair to describe the accuracy of a diagnostic test.
Moreover, as it would be helpful to assess the performance of a
diagnostic test by a single number, we derived the area under the
ROC curve (AUC). The meaning of the AUC has been proved to
be the probability that a random pair of positive/diseased and
negative/non-diseased individuals would be identified correctly
by the diagnostic test [29]. We obtained an average AUC¼ 0:88
over the 10 validation sets, with a standard deviation sAUC ¼ 0:07.

We also computed the ROC curve for the complete dataset
used in the 10-fold procedure, by collecting the neural output
obtained on each fold. This ROC, which has AUC¼ 0:87270:024,
is reported in Fig. 7.

To classify the large set of FPs we had left apart during the
sample extraction with the SOM (the 98.5% of FPs) we applied a
simple meta-classification procedure. We assigned to each FP the
average of the output obtained by the 10 trained neural classifiers.
The ROC obtained has AUC¼ 0:86570:024, as reported in Fig. 7.
The error on the AUC is computed according to Ref. [30]. It can be
noticed that the two values of AUC obtained are consistent, which
confirms that the FP sample extracted with the SOM (1.5% of
all FPs) is representative of the entire FP dataset, thus allowing a
proper train and generalization capability of the neural classifiers.
3.3. Results

We assessed the final system performance in terms of the free-
response operating characteristic (FROC) curve, both in case we
consider the ground truth with agreement level 1 (102 nodules
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Fig. 8. FROC curves obtained on: ground truth with agreement level 1 (102 nodules,

42 CTs), ground truth with agreement level 2 (25 nodules, 17 CTs), and the dataset of

42 CTs where only nodules annotated with the agreement level 2 were considered.
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contained in 42 CTs) and with agreement level 2 (25 nodules
contained in 17 CTs out of the dataset of 42 CTs). The FROC curves
obtained are shown in Fig. 8. In case the ground truth with

agreement level 1 is considered, the e¼ 94:1% efficiency of the ROI
hunter algorithm has to be taken into account as a multiplicative
factor to the values of sensitivities reported in the ROC of Fig. 7. By
contrast, e¼ 1 in case the agreement level 2 is considered. It can be
noticed that the CAD system performance is strongly influenced
by the choice of the underlying ground truth. A large discrepancy
is indeed shown between the performance evaluated on the
different agreement levels of the ground truth, and, as expected, the
sensitivity is higher for nodules identified by both radiologists.
For example, the poor 44% sensitivity obtained on the ground truth

with agreement level 1 with six FP per scan grows up to the 72% if
the underlying ground truth is changed to the agreement level 2. At
that value of sensitivity, the FP rejection ability of the system
reaches the 99%.

The impact on the results of including CTs with no pleural
nodules could also be estimated in the case where the ground

truth with agreement level 2 is considered. We compared the
results obtained on the dataset of 17 CTs containing 25 pleural
nodules (ground truth with agreement level 2), with the results
obtained on the same dataset added by the remaining 25 CTs not
containing pleural nodules (according to the ground truth with

agreement level 2 criterion). As shown in Fig. 8, we found out that a
comparable amount of FP detections is found in subjects with and
without pleural nodules. This effect is probably mainly due to the
fact that lung cancer screening is addressed to a high-risk
population (55–69 year-old males and females, smokers or former
smokers), whose pleura surface is often affected by the presence
of many confounding objects, even in the absence of pleural
nodules. We verified by visual inspection that the pleura surface
of most subjects in our dataset, both with and without pleural
nodules (agreement level 2), is equally affected by apical scars,
pleural thickening, abnormalities next to emphysematous bullae,
etc., which are the typical FP detections generated by our CAD
system.
4. Conclusions and discussion

We have developed a computerized method for the automated
detection of pleural nodules on low-dose and thin-slice lung CT
scans. This method consists of an initial selection of a list of
nodule candidates, and the classification of the 12 features
computed for each segmented nodule candidate. Despite we did
not carry out an extremely refined nodule segmentation proce-
dure (e.g. that reported in Way et al. [31]), it allows to compute
highly discriminant features, as confirmed by the performance
achieved in classification. A dataset of 42 annotated CT scans has
been used to develop, test and validate the CAD system. As this
not extremely wide dataset could hardly be partitioned into
equally representative subsets, the whole data took part both to
the estimate of the system parameters and to the final validation.
In particular, the system parameters related to the nodule size
(e.g. the length of normals in the DGC method, the disk size in
the opening-based procedure, the double-threshold cuts on the
volumetric features) have been tuned to meet the size range of the
nodules to be detected. They were a priori chosen according to
the physical range of nodule sizes and eventually fine-tuned once
verified the impact on the whole dataset. By contrast, the training
of the neural classifier has been performed according to the
10-fold cross validation method, thus leaving apart a small set of
validation cases in each training session. Moreover, as only the
1.5% of FP patterns extracted by the SOM have been used to train
the neural network, all the remaining FP patterns actually are
processed by the classifier only as validation data.

We finally showed the FROC curves we obtained on a dataset
of 42 CT scans; they were evaluated at different ground truth

agreement levels. In particular, on the ground truth with agreement

level 1 the system does not achieve competitive values of
sensitivity at an acceptable level of FP detections per scan. By
contrast, the 72% sensitivity is obtained with only six FPs per scan
(corresponding to 0.02 FPs per slice) on the ground truth with

agreement level 2.
The CAD system we presented in this paper is designed as a

dedicated system to pleural nodule identification. However, as
much more efforts in the literature have so far gone through the
simultaneous analysis of lung nodules of all categories, we are
rather limited to have a vast performance comparison between
our method and other CAD systems with the same purpose.
Among the available CAD schemes, the one proposed by Paik et al.
[18] in detecting clinically significant solid lung nodules using
surface normal overlap method on datasets extracted from eight
chest CTs containing 84 nodules demonstrated the 80% sensitivity
to nodules with 6 mm in diameter and larger at 1.3 FPs/dataset.
We could not convert this result in terms of FPs neither per scan
or per slice, as the number of slices analyzed for each dataset is
not reported in [18]. In a study by Lee et al. [32] on pulmonary
nodules, a conventional template matching was employed to
detect nodules existing on the lung wall area. A dataset of 20
clinical cases has been considered. The system sensitivity to all
types of nodules is 72% at 1.1 FPs/slice. In particular, their system
shows the 71% sensitivity to pleural nodules at 0.5 FPs/slice. The
ability in rejecting the 88% of FPs within the detected nodule
candidates is also reported. At a similar value of sensitivity (72%)
our system generates only 0.02 FPs/slice, and the corresponding
FP rejection ability is 99%. However, a strict quantitative
comparison between our system performance and those reported
in [18,32] is precluded by the difference in the CT acquisition
parameters and the small number of cases collected in the dataset
used in each study. A reliable comparison between our results
and those reported by other research groups working on lung
CAD systems could be performed only if all CAD developers run
their algorithms on a common and publicly available dataset of
annotated CT scan (e.g. the database provided by the Lung
Imaging Database Consortium [33]). Unfortunately, a similar
analysis cannot be performed at present on our CAD system as,
to our knowledge, the publicly available annotated databases do
not currently include the characterization of the nodule types, i.e.
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it is not specified whether a nodule is either pleural or belongs to
other nodule categories.
Conflict of interest statement

No conflict of interest.
Acknowledgments

This work has been carried out in the framework of the MAGIC-
5 Collaboration, supported by the Italian Istituto Nazionale di Fisica

Nucleare (INFN, CSN 5) and ministero dell’Universit�a e della Ricerca

(MIUR). We also acknowledge Drs. F. Falaschi, C. Spinelli and
L. Battolla of the U.O. Radiodiagnostica dell’Azienda Ospedaliera

Universitaria Pisana and Prof. D. Caramella and Dr. T. Tarantino
of the Divisione di Radiologia Diagnostica e Interventistica del

Dipartimento di Oncologia, Trapianti e Nuove Tecnologie in Medicina

dell’Universit�a di Pisa for providing the dataset of CT scans.

References

[1] A. Jemal, T. Murray, E. Ward, A. Samuels, R.C. Tiwari, A. Ghafoor, E.J. Feuer, M.J.
Thun, Cancer statistics, 2005, CA Cancer J. Clin. 55 (2005) 10–30.

[2] A. Micheli, P. Baili, M. Quinn, E. Mugno, R. Capocaccia, P. Grosclaude, The
EUROCARE Working Group, Life expectancy and cancer survival in the
EUROCARE-3 cancer registry areas, Ann. Oncol. 14 (5) (2003) V28–V40.

[3] G.K. Singh, B.A. Miller, B.F. Hankey, Changing area socioeconomic patterns in
US cancer mortality, 1950–1988: part II—lung and colorectal cancers, J. Natl.
Cancer Inst. 94 (2002) 916–925.

[4] S. Diederich, M.G. Lentschig, T.R. Overbeck, D. Wormanns, W. Heindel,
Detection of pulmonary nodules at spiral CT: comparison of maximum
intensity projection sliding slabs and single image reporting, Eur. Radiol. 11
(2001) 1345–1350.

[5] S. Itoh, M. Ikeda, S. Arahata, T. Kodaira, T. Isomura, T. Kato, K. Yamakawa, K.
Maruyama, T. Ishigaki, Lung cancer screening: minimum tube current
required for helical CT, Radiology 215 (2000) 175–183.

[6] C.I. Henschke, D.I. McCauley, D.F. Yankelevitz, D.P. Naidich, G. McGuinness,
O.S. Miettinen, D.M. Libby, M.W. Pasmantier, J. Koizumi, N.K. Altorki, J.P.
Smith, Early lung cancer action project overall design and findings from
baseline screening, Lancet 354 (9173) (1999) 99–105.

[7] S.J. Swensen, Screening for lung cancer with computed tomography, BMJ 326
(2003) 894–895.

[8] E.F. Patz, S.J. Swensen, J.E. Herndon, Estimate of lung cancer mortality
from low-dose spiral computed tomography screening trials: implications
for current mass screening recommendations, J. Clin. Oncol. 22 (2004)
2202–2206.

[9] I. Gori, F. Bagagli, M.E. Fantacci, A. Preite Martinez, A. Retico, I. De Mitri, S.
Donadio, C. Fulcheri, G. Gargano, R. Magro, M. Santoro, S. Stumbo, Multi-scale
analysis of lung computed tomography images, JINST 2 (2007) P09007.

[10] A. Retico, P. Delogu, M.E. Fantacci, I. Gori, A. Preite Martinez, Lung nodule
detection in low-dose and thin-slice lung computed tomography, Comput.
Biol. Med. 38 (4) (2008) 525–534.

[11] Q. Li, S. Sone, K. Doi, Selective enhancement filters for nodules, vessels, and
airway walls in two- and three-dimensional CT scans, Med. Phys. 30 (8)
(2003) 2040.

[12] /http://medical.nema.orgS.
[13] R. Opfer, R. Wiemker, Performance analysis for computer aided lung nodule

detection on LIDC data, in: Proceedings of the SPIE 2007 Medical Imaging
Conference, SPIE, vol. 6515, 2007.

[14] J.K. Leader, T.E. Warfel, C.R. Fuhrman, S.K. Golla, J.L. Weissfeld, R.S. Avila, W.D.
Turner, B. Zheng, Pulmonary nodule detection with low-dose CT of the
lung: agreement among radiologists, Am. J. Roentgenol. 185 (4) (2005)
973–978.

[15] M.F. McNitt-Gray, S.G. Armato III, C.R. Meyer, A.P. Reeves, G. McLennan, R.C.
Pais, J. Freymann, M.S. Brown, R.M. Engelmann, P.H. Bland, G.E. Laderach, C.
Piker, J. Guo, Z. Towfic, D.P. Qing, D.F. Yankelevitz, D.R. Aberle, E.J. van Beek, H.
MacMahon, E.A. Kazerooni, B.Y. Croft, L.P. Clarke, The lung image database
consortium (LIDC) data collection process for nodule detection and annota-
tion, Acad. Radiol. 14 (12) (2007) 1464–1474.

[16] W.E. Lorensen, H.E. Cline, Marching cubes: a high resolution 3D surface
construction algorithm, Comput. Graphics 21 (4) (1987) 163–169.

[17] B. Golosio, A. Brunetti, R. Cesareo, S.R. Amendolia, D.V. Rao, S.M. Seltzer,
Images of soft materials: a 3D visualization of interior of the sample in
terms of attenuation coefficient, Nucl. Instrum. Methods A 465 (2001)
577–583.

[18] D.S. Paik, C.F. Beaulieu, G.D. Rubin, B. Acar, R.B. Jeffrey, J. Yee, J. Dey, S. Napel,
Surface normal overlap: a computer aided detection algorithm with
application to colonic polyps and lung nodule in helical CT, IEEE Trans.
Med. Imaging 23 (6) (2004) 661–675.

[19] H. Yoshida, J. Nappi, P. MacEneany, D.T. Rubin, A.H. Dachman, Computer-aided
diagnosis scheme for detection of polyps in CT colonography, Radiographics
22 (2002) 963–979.

[20] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures The Geometry Center, University of
Minnesota, 1993 /http://www.qhull.org/S.

[21] C.B. Barber, D.P. Dobkin, H.T. Huhdanpaa, The quickhull algorithm for convex
hulls, ACM Trans. Math. Software 22 (4) (1996) 469–483.

[22] See /http://www.compgeom.com/meb/S and reference there in.
[23] M.N. Gurcan, B. Sahiner, N. Petrick, H.P. Chan, E.A. Kazerooni, P.N. Cascade, L.

Hadjiiski, Lung nodule detection on thoracic computed tomography images:
preliminary evaluation of a computer-aided diagnosis system, Med. Phys. 29
(11) (2002) 2552–2558.

[24] H. Arimura, S. Katsuragawa, K. Suzuki, F. Li, J. Shiraishi, S. Sone, K. Doi,
Computerized scheme for automated detection of lung nodules in low-dose
computed tomography images for lung cancer screening, Acad. Radiol. 11 (6)
(2004) 617–629.

[25] R. Bellotti, F. De Carlo, G. Gargano, S. Tangaro, D. Cascio, C. Catanzariti, P.
Cerello, S.C. Cheran, P. Delogu, I. De Mitri, C. Fulcheri, D. Grosso, A. Retico, S.
Squarcia, E. Tommasi, B. Golosio, A CAD system for nodule detection in low-
dose lung CTs based on region growing and a new active contour model, Med.
Phys. 34 (12) (2007) 4901–4910.

[26] T. Kohonen, Self-Organization and Associative Memory, Springer, New York,
1988;
T. Kohonen, Self-Organizing Maps, Springer, New York, 1997.

[27] M. Stone, Cross-validatory choice and assessment of statistical predictions,
J. R. Stat. Soc. Ser. B Methodol. 36 (1974) 111–147.

[28] C.E. Metz, ROC methodology in radiologic imaging, Invest. Radiol. 21 (9)
(1986) 720–733.

[29] D.M. Green, J.A. Swets, Signal Detection Theory and Psychophysics, Wiley,
New York, 1966.

[30] J.A. Hanley, B.J. McNeil, The meaning and use of the area under a receiver
operating characteristic (ROC) curve, Radiology 143 (1982) 29–36.

[31] T.W. Way, L.M. Hadjiiski, B. Sahiner, H.P. Chan, P.N. Cascade, E.A. Kazerooni, N.
Bogot, C. Zhou, Computer-aided diagnosis of pulmonary nodules on CT scans:
segmentation and classification using 3D active contours, Med. Phys. 33 (7)
(2006) 2323–2337.

[32] Y. Lee, T. Hara, H. Fujita, S. Itoh, T. Ishigaki, Automated detection of pulmonary
nodules in helical CT images based on an improved template matching
technique, IEEE Trans. Med. Imaging 20 (7) (2001) 595–604.

[33] S.G. Armato III, et al., The Lung Image Database Consortium Research Group,
Lung image database consortium: developing a resource for the medical
imaging research community, Radiology 232 (2004) 739–748.

Alessandra Retico was born in Avezzano, Italy, in 1975. She received the degree in
physics in 1999 and the Ph.D. in 2002, both from the University of Rome, Italy.
Since 2005, she has been with the INFN (National Institute of Nuclear Physics),
Pisa, Italy, where she is a researcher in Applied Physics. Her research activity
currently focuses on the development of software for data analysis and
classification, with particular interest in image processing.

Maria Evelina Fantacci was born in Livorno, Italy, in 1966. She received the Degree
in Physics in 1991 and the specialty degree in Medical Physics in 1994, both from
the University of Pisa, Italy. Since 1997, she has been with the University of Pisa,
Italy, where she is a researcher in applied physics. Her research interests focus on
automated analysis of diagnostic images and development of new detectors for
medical examination.

Ilaria Gori was born in Genova, Italy, in 1977. She received the degree in
Mathematics from the University of Genova, in 2002 and the master degree in
applied mathematics from the University of Milano Bicocca, Italy, in 2003. Since
2004, she has been with Bracco Imaging S.p.A., Milano, and Istituto Nazionale di
Fisica Nucleare (INFN), Pisa, Italy, working with the Medical Physics Group of the
Pisa University. Her research interests focus on computer-aided detection of
pathological objects in biomedical images.

Parnian Kasae was born in Tehran, Iran, in 1977. She received the degree in
biomedical engineering from the Azad University of Tehran South, Iran, in 1999
and a master degree in modeling and simulation of complex realities from
International Center for Theoretical Physics (ICTP) in Trieste, Italy, in 2004. Since
2006, she has been collaborating with Istituto Nazionale di Fisica Nucleare (INFN)
in Cagliari, Italy, as post-doctorate fellow working on computer aided detection
systems. Her research interests focus on biomedical image processing.

Bruno Golosio was born in Nuoro, Italy, in 1971. He received the degree in physics
from the University of Pisa, Italy, in 1998, and the Ph.D. from the University of
Cagliari, Italy, in 2004. Since 2005, he is a researcher in physics at the University of
Sassari, Italy. His research interests focus on X-ray physics, Monte Carlo simulation
techniques, image reconstruction and analysis.

http://medical.nema.org
http://www.qhull.org/
http://www.compgeom.com/meb/<mml:math altimg=


ARTICLE IN PRESS

A. Retico et al. / Computers in Biology and Medicine 39 (2009) 1137–11441144
Alessio Piccioli was born in Verbania, Italy, in 1973. He received the degree in
physics from the University of Pisa, Italy, in 1999, and the Ph.D. from the University
of Siena, Italy, in 2003. He had a post-doctorate position at University of
Siena, Italy, and since 2006, he has been with the University of Sassari, Italy. His
research interests focus on data analysis in astroparticle and medical physics
experiments.

Piergiorgio Cerello was born in Biella, Italy, in 1965. He received the degree in
physics from the University of Torino, Italy, in 1989 and a Ph.D. in experimental
particle physics in 1995. Since 1995, he is a researcher with the INFN (National
Institute of Nuclear Physics), Italy. His research interests focus on the search for the
quark gluon plasma in ion–ion collisions and on the application of software
technologies developed for the high energy physics to the analysis of medical
images.
Giorgio De Nunzio was born in Lecce, Italy, in 1965. He received the degree in
physics from the University of Lecce in 1991, and a Ph.D. from the University of
Montpellier II, France, in 1995. Since 2001, he has been with the University of
Lecce, where he is a researcher in applied physics. His research interests focus on
physics, informatics, and image processing, applied to medicine and cultural
heritage.

Sabina Tangaro was born in 1972. She received the degree in physics from
University of Pisa, Italy, and the Ph.D. in physics from University of Bari, Italy.
Currently she is a researcher at INFN (National Institute of Nuclear Physics), Bari,
Italy. Previously, she has been research fellow at Italian National Council of
Researches and post-doctoral fellow at University of Bari. Her research interests
include many topics on image processing, computer vision, pattern recognition
and machine learning, with application in medicine and on medical imaging.


	Pleural nodule identification in low-dose and thin-slice lung computed tomography
	Introduction
	The dataset of lung CT scans
	The CAD system
	Identification of nodule candidates: the ROI hunter procedure
	Identification of the pleura surface
	Directional-gradient concentration (DGC)
	Matching with the morphological opening-based procedure

	False-positive finding reduction
	Feature extraction
	Feature classification

	Results

	Conclusions and discussion
	Conflict of interest statement
	Acknowledgments
	References




